
Primary Immunodeficiency Diseases in children and adults

- Background
- Approach to diagnosis of PID
- Genetic diagnosis of PID
- Lack of focus is good thing
- Looks like duck but not a duck

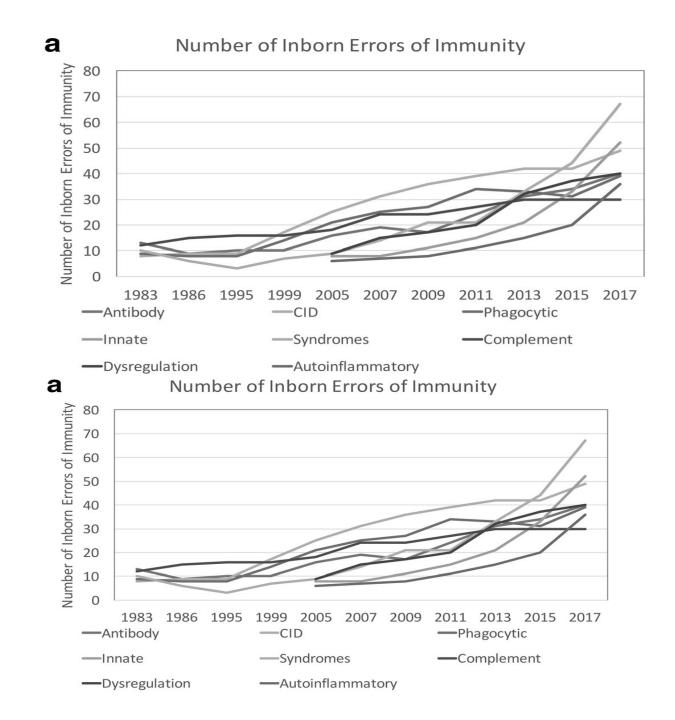
Primary Immunodeficiency diseases

Inherited diseases of immune system

• Affect different components of the immune system

Clinically heterogeneous

Why do we need to diagnose PIDs?


- Collective Prevalence of high as 1 in 10000 suggesting a very high burden of disease
- Often missed causing significant morbidity and mortality
- Multiple family members may get affected leading to financial burden on the family and society
- Early diagnosis and adequate management can lead to significant reduction in morbidity and mortality

Group	Category	
Group I	Combined immunodeficiencies	
J Clin Immunol (2018) 38:96–128 https://doi.org/10.1007/s10875-017-0464-9	CrossMark	
ORIGINAL ARTICLE		
	Immunological Societies: 2017 Primary eases Committee Report on Inborn	
Group VI	Defects in innate immunity.	
Group VII	Autoinflammatory disorders.	
Group VIII	Complement deficiencies.	
Group IX	Phenocopies of PID	

 International Union of Immunological Societies (IUIS):

- 354 distinct disorders
- 344 different gene defects listed (Feb2017)

		_ Group I	Combined immunodeficiencies
Group IV	Diseases of immune dysregulation.	Group II	Combined immunodeficiencies with associated or syndromic features.
Group VII	Autoinflammatory disorders.	Group III	Predominantly antibody deficiencies.
Group VIII	Complement deficiencies.	Group V	Congenital defects of phagocyte number, function, or both.
• Auto-		Group VI	Defects in innate immunity.
		Group VIII	Complement deficiencies.
		born errors f immunity	
			Recurrent infectionsMalignancies

- PID presenting early neonatal period
 - LAD-I
 - Omenn syndrome
 - Di George Syndrome
 - SCN
 - Reticular dysgenesis

- PID presenting within first 6 months of life
 - SCID
 - CID
 - Di George Syndrome
 - Diseases of immune dysregulation
 - CGD
 - HIGM: CD40-CD40L deficiency
 - MSMD
 - HLH

- PID presenting between 6 months-1 year
 - XLA
 - Other agammaglobulinemia
 - Wiskott–Aldrich syndrome
 - DiGeorge syndrome
 - Chronic mucocutaneous candidiasis
 - Hypogammaglobulinaemia
 - Phagocytic defect CGD

- PID presenting after the age of 5 year
 - AT, other DNA repair disorder
 - Common variable immunodeficiency
 - Specific antibody deficiency
 - Complement disorder
 - Milder forms of PID

Varning Signs of Primary Immunodeficiency

Primary Immunodeficiency (PI) causes children and adults to have infections that come back frequently or are unusually hard to cure. 1:500 persons are affected by one of the known Primary Immunodeficiencies. If you or someone you know is affected by two or more of the following Warning Signs, speak to a physician about the possible presence of an underlying Primary Immunodeficiency.

- Four or more new ear infections within 1 year.
- 2 Two or more serious sinus infections within 1 year.
- 3 Two or more months on antibiotics with little effect.
- 4 Two or more pneumonias within 1 year.
- 5 Failure of an infant to gain weight or grow normally.
- 6 Recurrent, deep skin or organ abscesses.
- Persistent thrush in mouth or fungal infection on skin.
- 8 Need for intravenous antibiotics to clear infections.
- 9 Two or more deep-seated infections including septicemia.
- 10 A family history of PI.

The second secon

PIDs in adults

• Antibody deficiencies:

- Common Variable Immune Deficiency : CVID
- Specific antibody deficiencies
- IgG subclass deficiency
- Autoimmune lymphoproliferative syndrome
- Hypomorphic forms of many severe PID
- Phenocopies of PID

Primary Immunodeficiency (PI) causes children and adults to have infections that come back frequently or are unusually hard to cure. 1:500 persons are affected by one of the known Primary Immunodeficiencies. If you or someone you know is affected by two or more of the following Warning Signs, speak to a physician about the possible presence of an underlying Primary Immunodeficiency.

- Two or more new ear infections within 1 year.
- 2 Two or more new sinus infections within 1 year, in the absence of allergy.
- **3** One pneumonia per year for more than 1 year.
- 4 Chronic diarrhea with weight loss.
- 5 Recurrent viral infections (colds, herpes, warts, condyloma).
- 6 Recurrent need for intravenous antibiotics to clear infections.
- 7 Recurrent, deep abscesses of the skin or internal organs.
- 8 Persistent thrush or fungal infection on skin or elsewhere.
- Infection with normally harmless tuberculosis-like bacteria.
- **10** A family history of PI.

Clinical clues:

- Age of presentation
- Pattern of infections: organism and the site involved
- Associated clinical manifestations
 - Autoimmunity and autoinflammation
 - Endocrine manifestations
 - Malignancies
 - Skeletal abnormalities
 - Skin manifestations
- Family history:
 - Early sibling death due to similar illness
 - Consanguinity
 - X-linked pattern

Approach diagnosis of PID

Complete blood count:

• Absolute counts:

- ANC
 - Neutropenia: ANC<500 (Severe congenital neutropenia/cyclic neutropenia)
 - Neutrophilia: Leukocyte Adhesion Deficiencies (LAD)
- ALC
 - Lymphopenia: Combined Immunodeficiency (CID)
 - Lymphocytosis: Autoimmune lymphoproliferative Disorders
- AEC
 - Eosinophilia: Hyper IgE syndromes/ Omenn's syndrome
- AMC
 - Monocytopenia in GATA2 deficiency

• Platelet count with MPV:

• Wiskott Aldrich Syndrome (WAS)

Immunological evaluation:

- Total number of cells
- Function of cells:
 - T cell proliferation
 - Antibody production
 - DHR assay
- Assays for specific diagnosis:
 - CD18 expression
 - Perforin expression

Initial evaluation:

- Serum immunoglobulin levels
- Lymphocyte subset analysis
- NBT test
- Complement levels

J Clin Immunol DOI 10.1007/s10875-015-0198-5

ORIGINAL RESEARCH

The 2015 IUIS Phenotypic Classification for Primary Immunodeficiencies

Aziz Bousfiha¹ · Leïla Jeddane¹ · Waleed Al-Herz^{2,3} · Fatima Ailal¹ · Jean-Laurent Casanova^{4,5,6,7,8} · Talal Chatila⁹ · Mary Ellen Conley⁴ · Charlotte Cunningham-Rundles¹⁰ · Amos Etzioni¹¹ · Jose Luis Franco¹² · H. Bobby Gaspar¹³ · Steven M. Holland¹⁴ · Christoph Klein¹⁵ · Shigeaki Nonoyama¹⁶ · Hans D. Ochs¹⁷ · Eric Oksenhendler^{18,19} · Capucine Picard^{5,20} · Jennifer M. Puck²¹ · Kathleen E. Sullivan²² · Mimi L. K. Tang^{23,24,25}

Spectrum of infections: CID

Early onset (<6 months)

Common

Microorganisms

Viruses

- CMV
- Vaccinia
- Adenovirus, HSV,
- Measles

Pyogenic bacteria Mycobacteria:

BCGiosis

Fungi

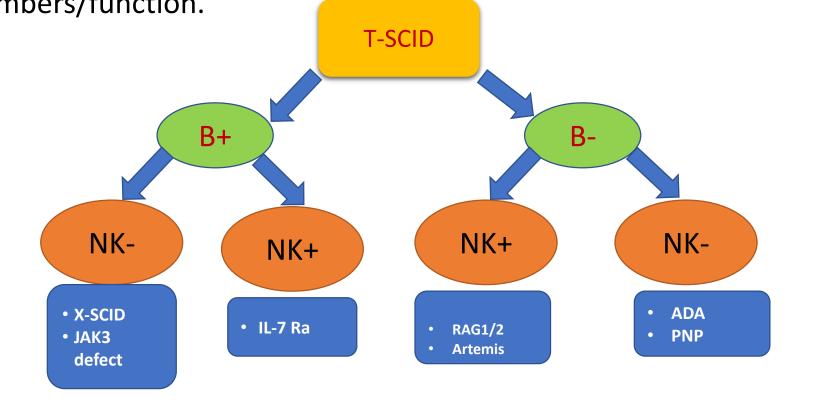
•Candida,Aspergillus, PCP

Protozoa

Cryptosporidium

- Failure to thrive
- Oral candidiasis
- Protracted diarrhea
- Skin rash
- Respiratory Tract
- Systemic viral infections
- Gastroenteritis
- Opportunistic infections
- GVHD
- Hepatospenomegaly (Omenn syndrome)

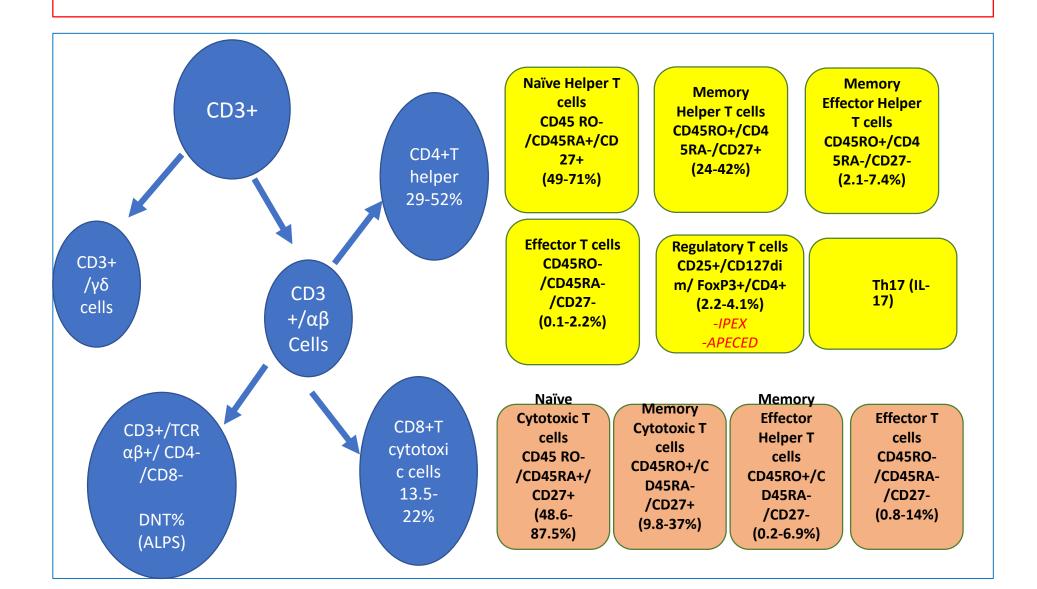
Less common

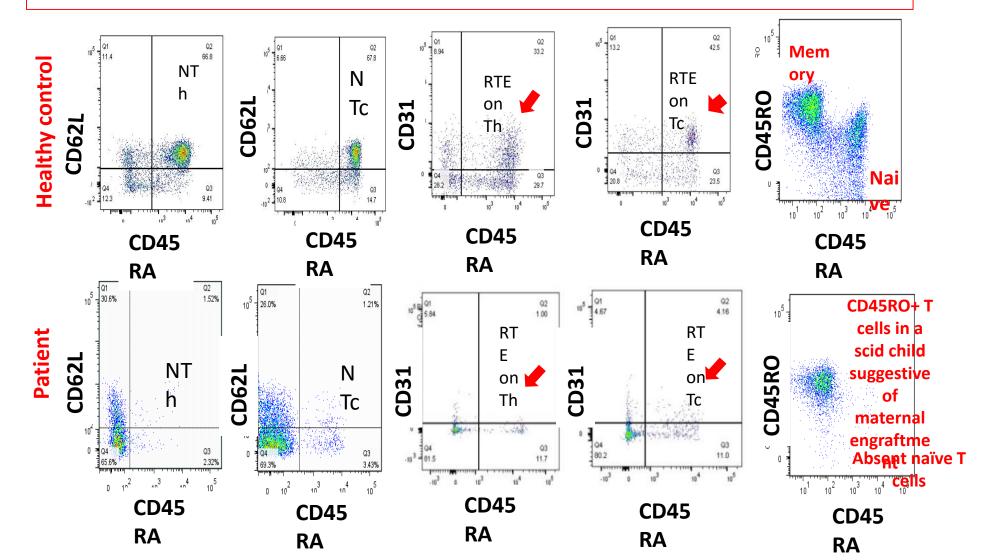

Microorganisms

- Bacteria
- Campylobacter
- Mycobacteria

•Listeria

1. Evaluation of defects with altered T lymphocyte population


•Severe Combined Immunodeficiency (SCID) disorder characterized by CD3+ T cell lymphopenia. Further classification based on B and NK cell numbers/function.


Interpretation of lymphocyte subset analysis

- Check % as well as absolute counts
- The normal ranges vary significantly depending on the age of the patient
- In infants under 4 months of age, a CD4 count of <1000/mm3 is generally associated with impaired cellular immunity, whereas it is <500/mm3 in children over 2 years of age and in adults.
- Immunosuppressive therapies like steroids also significantly alter the values of T and B cell subsets and should be interpreted carefully.
- Do not rely on single observation, repeat counts or compare with the previous counts if available

Immunophenotyping T Lymphocytes

Measurement of Naïve T cell subsets (CD45RA+ CD62L+ T cells) Recent Thymic emigrants (RTE) and Memory T cells (CD45RO+ T cells)

T+ Severe combined Immunodeficiency

- Activation markers on T cells: <u>HLA- DR</u>
- TCR- V beta repertoire analysis

 T cell proliferation response to various stimuli

- T+ B+ NK+: Omen's syndrome
 Elevated HLA- DR expression on CD3+ T cells
 Restricted repertoire of T cells
- CD8+B+NK+: CD4 lymphopenia : MHC class II deficiency
 Lack of HLA- DR expression on B cells, Monocytes
- CD4+B+ NK-: ZAP70 kinase deficiency
 Defective CD4+Th cell proliferation

Spectrum of infections: Antibody deficiency

Onset typically between 4 months-1 year

•Respiratory tract

- Otitis media, mastoiditis
- Chronic sinusitis
- Broncho and lobar penumonia
- Bronchiectasis
- Pulmonary infiltrates (granulomas)
- GI tract
 - Giardia
 - Nodular hyperplasis, ileitis, colitis
- •Skin infections
- •Sepsis/Meningitis
- •Skeletal
- Arthritis (bactetial,
- mycoplasma, noninfectiuos)

Less common Microorganisms

Enteroviruses

- •Polio
- •ECHO
- •Salmonella
- •Campylobacter
- •Mycoplasma

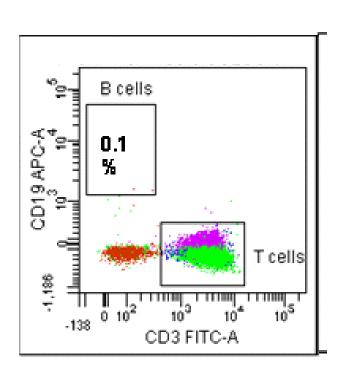
Common

Microorganisms

Pyogenic bacteria •Staphylococci •Streptococci •Hemophilus

Evaluation of Predominantly antibody deficiency

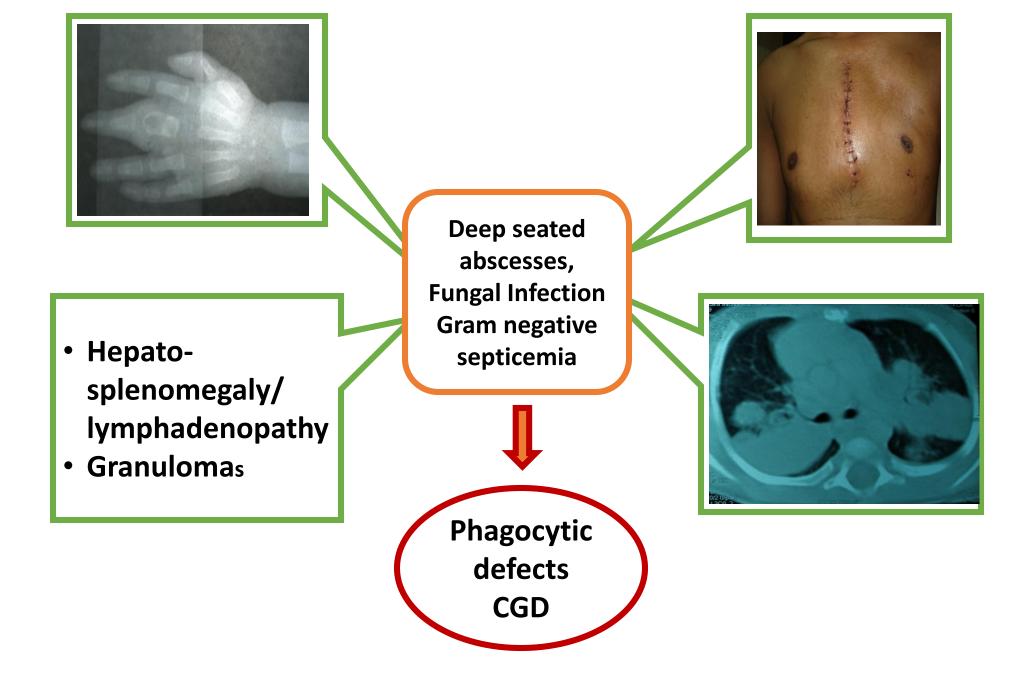
- B cell function:
 - IgG, A, M and E
 - Specific antibody responses against both protein and polysaccharide vaccines
 - Ig subclass estimation
- B cell numbers: CD19 or CD20
- B-cell immunophenotyping, and other modalities of measuring B-cell function


Immunoglobulin levels

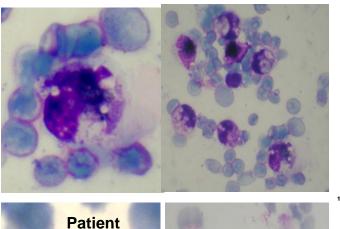
- IgG, IgA, IgM, IgE
 - The assay results should be evaluated in the context of the tested patient's age and clinical findings
 - Compare with age related normal ranges
 - Child < 6 months of age has circulating maternal IgG.</p>
- Blood transfusion and immunoglobulin infusion will alter the levels and hence this history needs to be taken.
- Persistence of hypogammaglobulinemia is required for at least 3 months needs to be documented for diagnosis of CVID
- Hypergammaglobulinemia can be the result of HIV-1, CGD, and ALPS

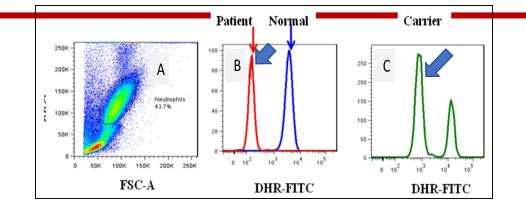
Immunoglobulin levels:

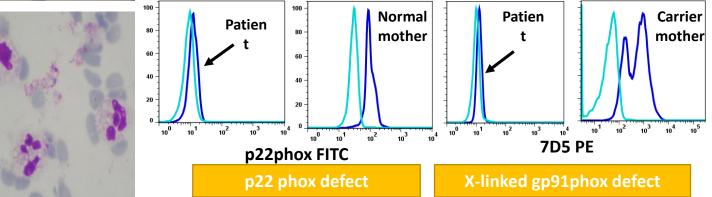
- Always rule out secondary causes of hypogammaglobulinemia
 - Drugs: Steroids, Rituximab, other chemotherapy
 - Myeloma and Lymphoma
 - Loss of Ig (usually IgM is normal) in urine, GI, skin


B cell numbers:

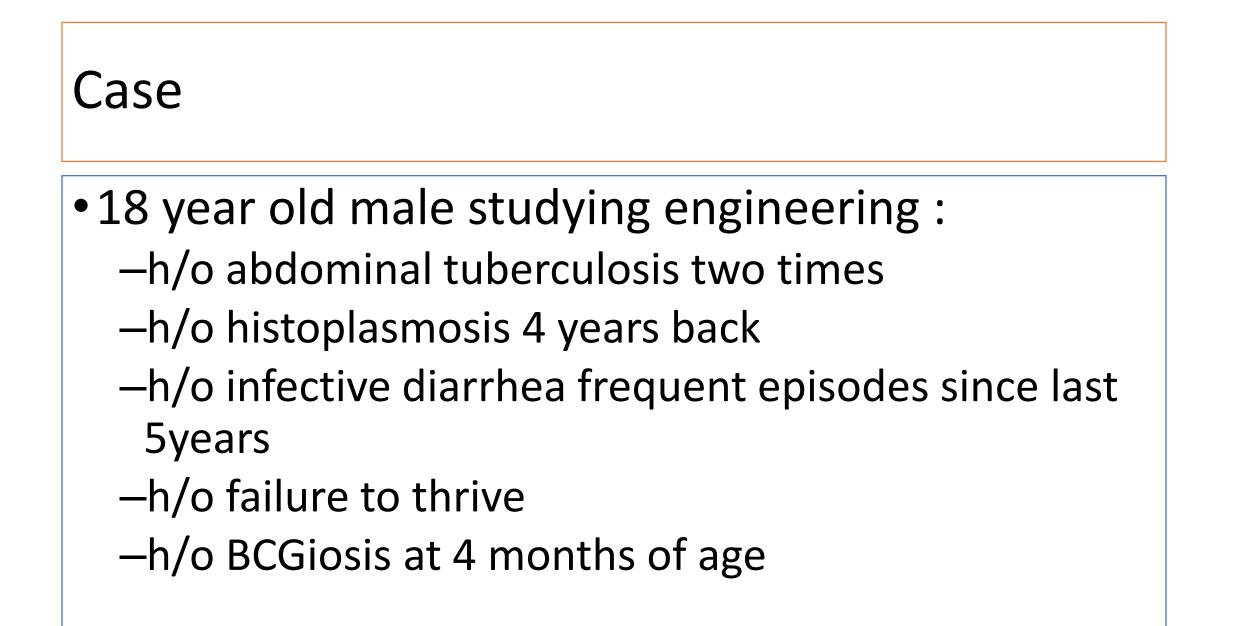
- Check % as well as absolute counts
- Significant variation depending on the age and hence must be compared with age matched controls
- Always interpret along with T cell and NK cell numbers
- Check history of drugs:
 - Rituximab
 - Steroids


B cell immunophenotyping


- CD19+=B cells expressing CD19 as a percent of total lymphocytes
- CD19+ CD21-=CD21 low ("immature") B cells
- CD19+ CD21+=mature B cells
- CD19+ CD27+=total memory B cells
- CD19+ CD27+ IgD+ IgM+=marginal zone or non-switched memory B cells
- CD19+ CD27+ IgD- IgM+=IgM-only memory B cells
- CD19+ CD27+ IgD- IgM-=class-switched memory B cells
- CD19+ IgM+=IgM B cells
- CD19+ CD38+ IgM+=transitional B cells
- CD19+ CD38+ IgM-=plasmablasts
- CD19+ CD20+=B cells co-expressing both CD19 and CD20 as a percent of total lymphocytes



Chronic Granulomatous disease:

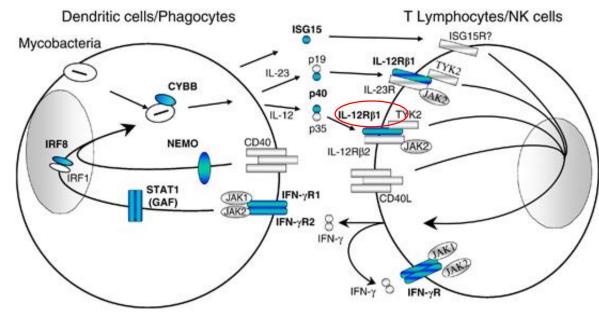

Normal

Interesting cases

• CBC:

- Lymphopenia ALC 1200/mm3
- Immunoglobulin levels: Normal
- NBT and DHR normal
- Lymphocyte subset analysis:
 - Absolute CD4 counts: 250
 - Other subsets within normal range
 - Memory and naïve T cells within normal range
- Sample sent for NGS
 - IL12R B1 deficiency

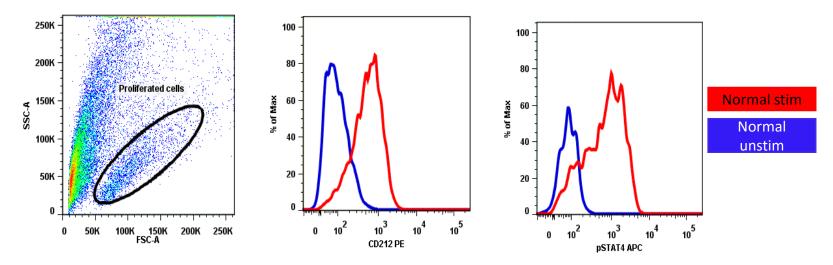
Mendelian Susceptibility to Mycobacterial Diseases (MSMD)

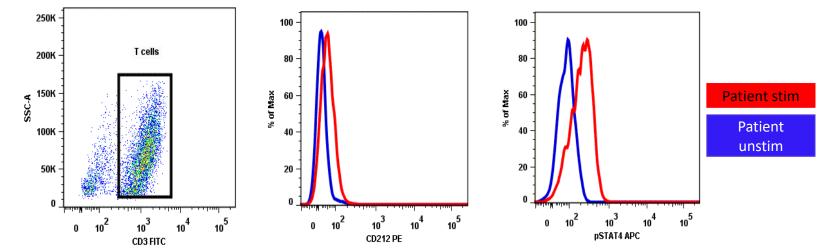

Defect in IFNy/IL12-23 Axis loop

Clinical Presentation

- •BCGiosis
- •Recurrent TB
- Infections by non-mycobacterial
 TB
- •Multifocal TB
- •Salmonella Infections
- •Fungal infections

Diagnosis

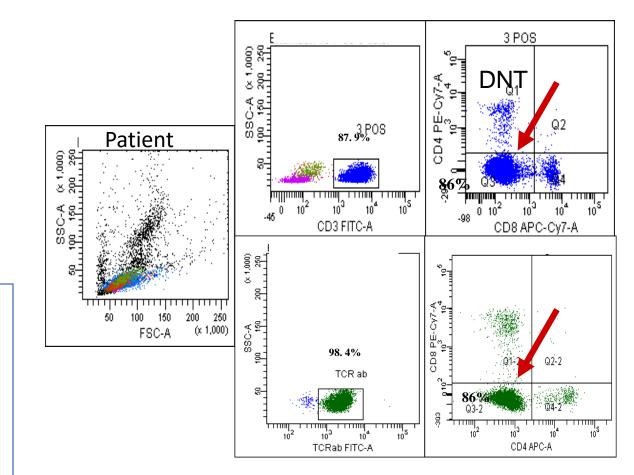

Flow cytometric evaluation of IFNγ/IL12-23 Axis


Bogunovic D, Boisson-Dupuis S, Casanova J-L. ISG15: leading a double life as a secreted molecule. *Experimental & Molecular Medicine*. 2013;45(4):e18-. doi:10.1038/emm.2013.36.

Defective molecules in this circuit, including IFN-R1, IFN-R2, IL-12p40, IL-12R-1, STAT-1, NEMO, IKBA

IL12Rβ1 and pSTAT4 expression in Normal

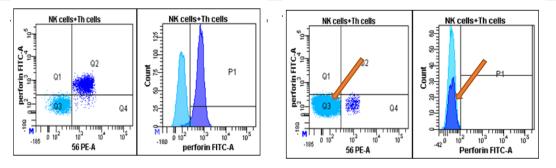
IL12Rβ1 and pSTAT4 expression in patient


Autoimmune Lymphoproliferative syndrome (ALPS)

Clinical presentation

- Chronic nonmalignant lymphadenopathy
- Splenomegaly
- Autoimmunity

Diagnosis of ALPS


Double Negative T cells (CD3+TCRab+CD4-CD8- % greater than or equal to 1.5% of total lymphocytes or 2.5% of T lymphocytes, in the setting of normal or elevated lymphocyte counts

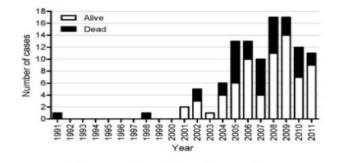
Familial Hemophagocytic Lymphohistiocytosis (FHL) with late onset

- 36year old Male born with non consanguineous marriage and no significant family history
- He had prolonged fever for more than a 3 months with cytopenia and hepatosplenomegaly.

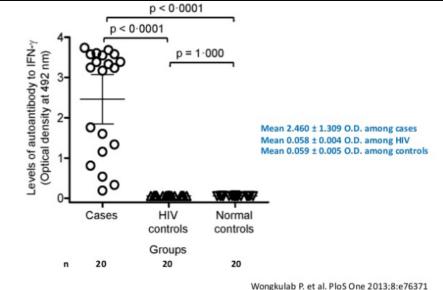
HLH criteria		
Fever	Yes	3/4
Splenomegaly	Yes	
Cytopenia	Yes	
Hepatitis	No	
Hemophagocytosis	yes	3/4
Ferritin (>500mg/ml)	1,00,000ng/ml	
sCD25 levels (1886- 13474pg/ml)	ND	
NK cell function	Low	
Triglygerides (>265mg/dl)	365mg/dl	2/2
Fibrinogen (<150mg%)	65mg%	

PRF1 gene mutation- 694C>T Arg232Cys

- Treated with HLH protocol 2004 including cyclosporine and dexamethasone. He responded well.
- On tappering the protocol, he again developed fever and hence, the protocol was resumed.
- Maintenance therapy and then was then off steroids for more than 6 months and leading routine life.
- He again had a relapse and inspite of prompt supportive treatment, *patient succumbed* to the disease due to multiple organ failure and septic shock

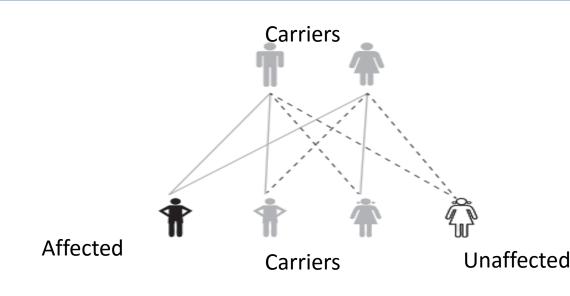

Autoantibody to interferon-gamma in Adult Lymphopenia

•Adult-onset-immunodeficiency a syndrome associated with disseminated infections.


•Cell-mediated immune deficiency in HIV-negative, adult-onset immunodeficient patients linked to the presence of autoantibody to interferon-gamma (IFN-γ).

Autoantibody to Interferon-gamma Associated with Adult-Onset Immunodeficiency in Non-HIV Individuals in Northern Thailand

Genetic Diagnosis of PID

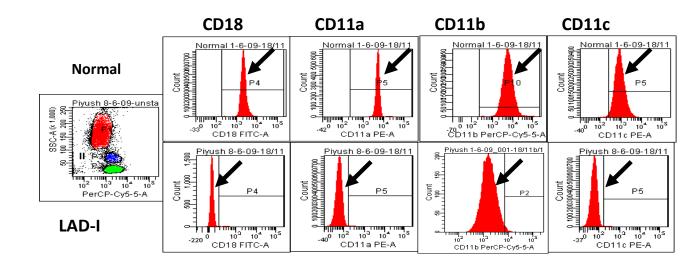

Genetics of PID

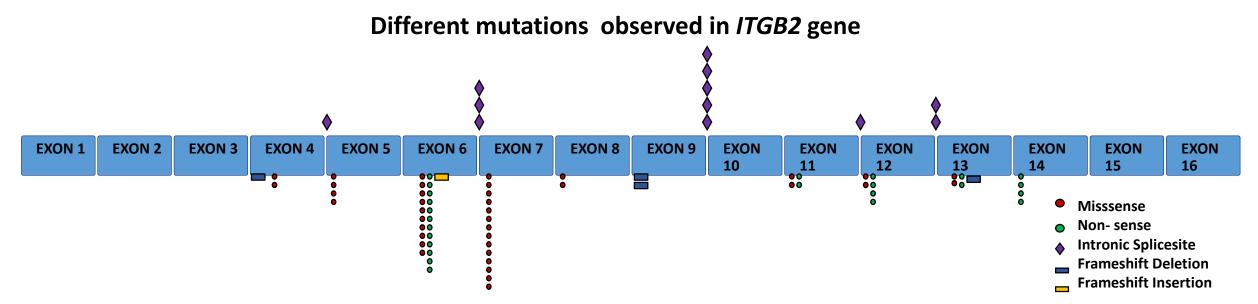
• >354 distinct disorders with 344 different gene

- Inheritance model:
 - Autosomal Recessive (AR),
 - Autosomal Dominant (AD)
 - X-Linked (XL)

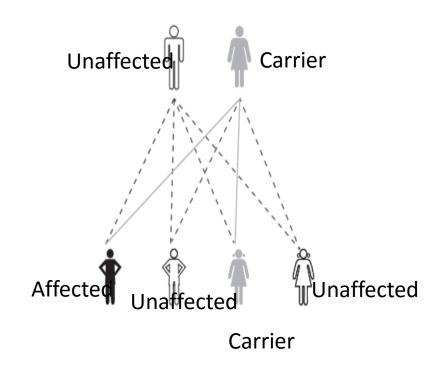
Inheritance Model: Autosomal Recessive (AR)

- Parents are carriers.
- Risk of having an affected child is ¼ or 25% percent chance
- Risk of having an affected child is increased in consanguineous marriages.




All of the second secon	INDIAN COUNCIL OF MEDICAL RESEARCH
Some PID following AR inheritance	Gene
Severe Combined Immunodeficiency	ADA,RAG1,RAG2,P NP,IL7RA,JAK3
Chronic Granulomatous disease	CYBA, NCF1, NCF2, NCF4.
Leukocyte Adhesion Defect	ITGB2
Familial Hemophagocytic lymphohisticytosis	PRF, UNC13D

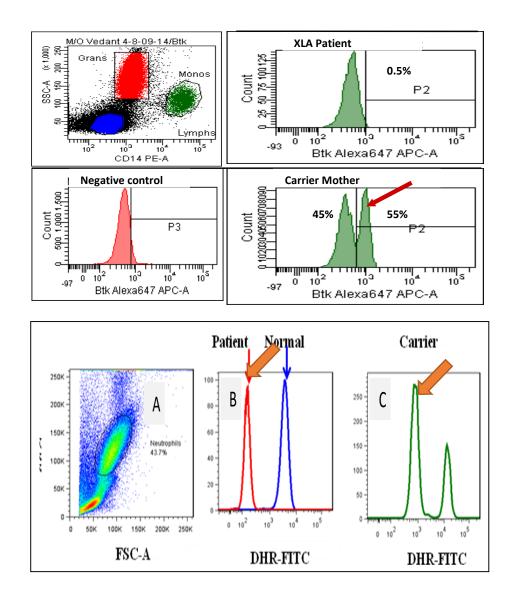
Leukocyte Adhesion defect (LAD-I)



X-Linked Inheritance

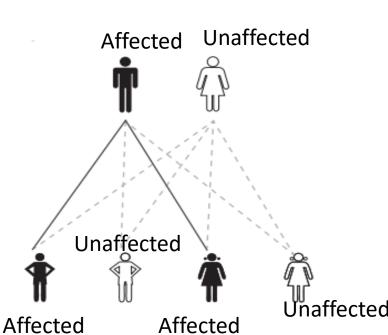
- Mutation is in a gene on the X chromosome.
- Females and males manifest the condition differently. Females with single copy mutation are usually carriers; males with one mutated copy are affected.
- Females carrier has 1 in 2 or 50% risk of having an affected boy and the same chance of having a carrier daughter.
- Family pedigree shows strong history of male children affected.
- Skewed X-inactivation can result in carrier females displaying symptoms of the condition as a larger proportion of their normal X chromosomes are inactivated

X-linked agammaglobulinemia (XLA; Bruton's disease)	BTK
X-linked severe combined immunodeficiency (X-SCID)	IL2RG
X-linked hyper IgM syndrome (CD40 ligand deficiency)	CD40L
X-linked lymphoproliferative disease (XLP)	SH2DIA
X-linked inhibitor of apoptosis (XIAP) deficiency	XIAP
X-linked chronic granulomatous disease (X-CGD)	CYBB
Wiskott-Aldrich syndrome (WAS)	WASP


X-linked agammaglobulinemia (XLA; Bruton's disease)

Laboratory Findings

• All Ig low with absent B cells


XLA?

- Analysis of Bruton Tyrosine Kinase on Monocytes
- Mother shows a classical carrier pattern of BTK expression

Autosomal Dominant Inheritance model

- Affected individual has one affected copy and normal functioning copy
- One copy of mutation sufficient to cause the condition
- 1 in 2 or 50% risk of passing the mutation on to offspring who will then also be affected.
- Same mutation degree of disease phenotype differs
 (variable expressivity)
- Same mutation may not result in disease phenotype in all individuals (incomplete penetrance).

	Some PIDs that follow AD inheritance	Gene
	Hyper IgE	STAT3
	Hereditary neutropenia	ELA2
	Di George Syndrome	deletions on chromosom e 22q11.2
ł	Mendelian susceptibility to mycobacterial diseases	Partial IFNgR1 deficiency STAT1

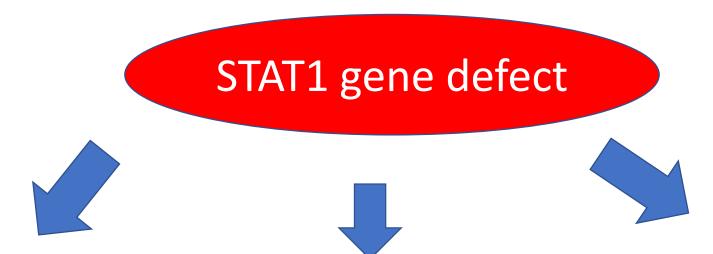
Hyper IgE Syndrome, due to mutations in STAT3 (Jobs syndrome)

Typical features in AD HYPER IgE:

Eczema,

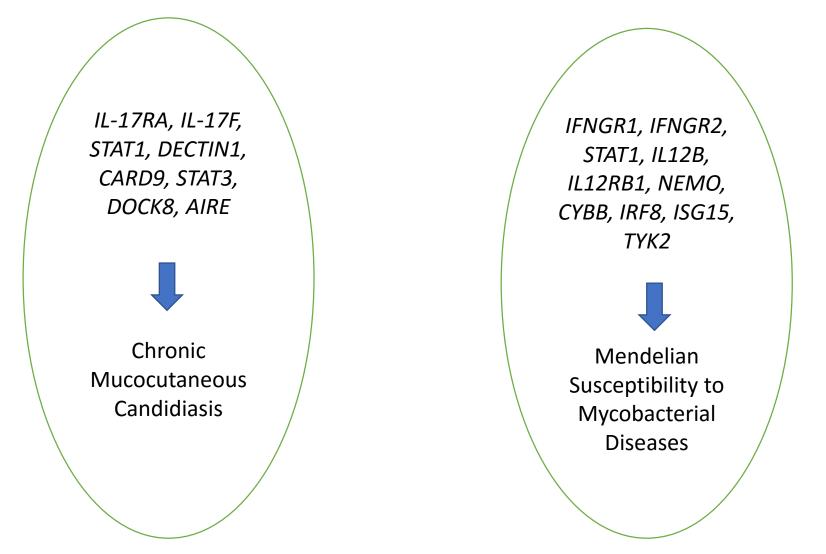
Repeated staphylococcal skin abscesses,

Staph pneumonia with pneumatocele formation


Skeletal abnormalities and fractures

unoglobulin	Values	Normal Range
IgG	22.9 g/L	3.5 to 16.2g/L
IgA	0.8 g/L	0.17 to 3.18 g/L
IgM	1.42g/L	0.30 to 2.65 g/L
IgE 50	800 IU/mL	3.0 - 423 IU/mL
IgE 50	800 IU/mL	3.0 - 423 IU

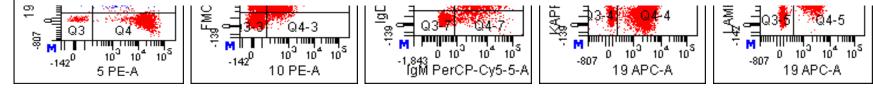
Laboratory finding of Increased IgE levels

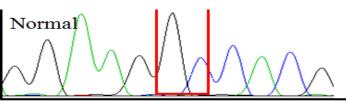

One gene, multiple phenotypes

AD STAT1 deficiency: Loss of function mutation susceptibility to mycobacterial and salmonella infections

AD STAT1 deficiency: gain-offunction mutation *chronic mucocutaneous candidiasis* Complete/ Partial **AR STAT1 deficiency**: loss-of-function mutation *susceptibility to severe viral and mycobacterial disease*

Different genes \rightarrow similar phenotype





Clinical, Immunological, and Molecular Findings in Four Cases of B Cell Expansion With NF-kB and T Cell Anergy Disease for the First Time From India

Maya Gupta¹, Jahnavi Aluri¹, Mukesh Desai², Madhukar Lokeshwar³, Prasad Taur², Michael Lenardo⁴, Jenna Bergerson⁴, Aparna Dalvi¹, Snehal Mhatre¹, Manasi Kulkarni¹, Priyanka Kambli¹ and Manisha Madkaikar^{1*}

What strategy do we use for molecular diagnosis?

IMMUNOHAEMATOLO

• NGS:

- PID panel
- Clinical exome
- Whole exome
- Whole genome

No shoe that fits all

Diseases for Sanger sequencing/ specific gene analysis is preferred:

- LAD-I
- Perforin deficiency
- X-HIGM
- XLA
- CGD

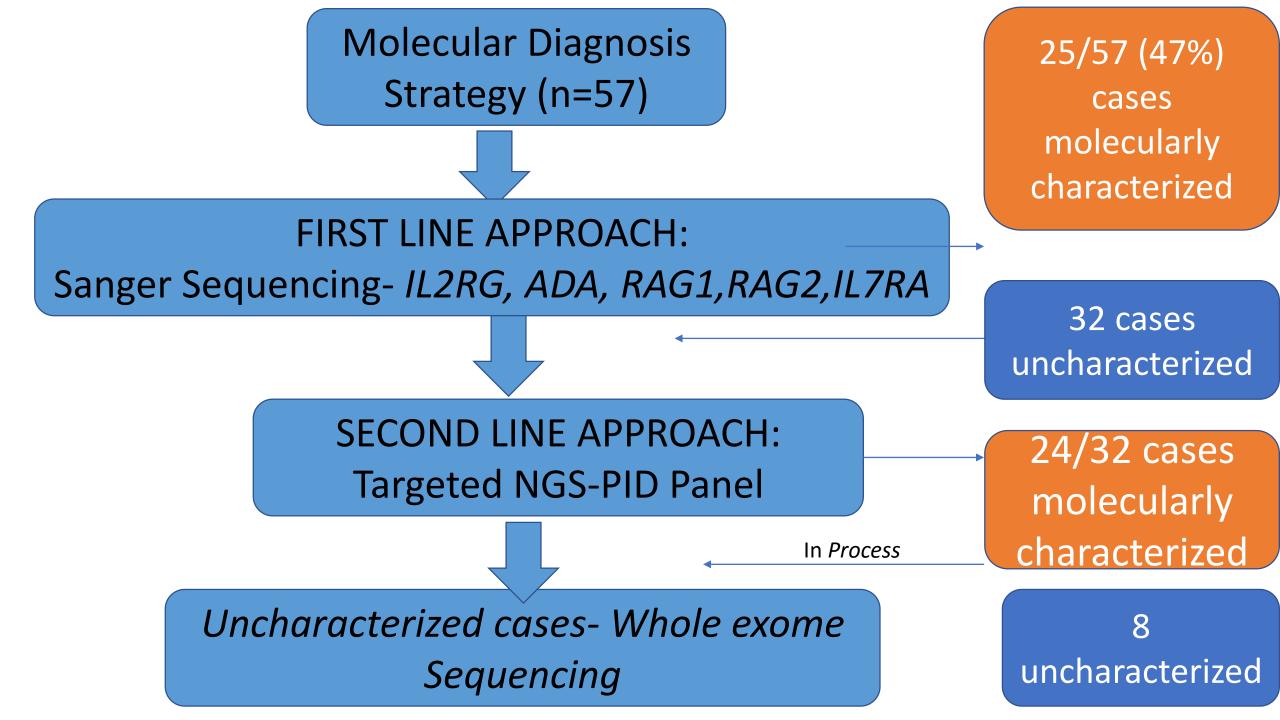
Lack of focus is good thing

- 10 months old male child
- 2nd by order born of 3rd degree consanguineous marriage,
- Symptomatic since day 7 of iife with fever and loose stools and respiratory distress
- Elder female sibling death at 6 months of age due to respiratory illness.
- Elevated absolute lymphocyte count (ALC23023/cu mm)
- Lymphocyte subset analysis elevated CD8
- Sample sent for NGS analysis

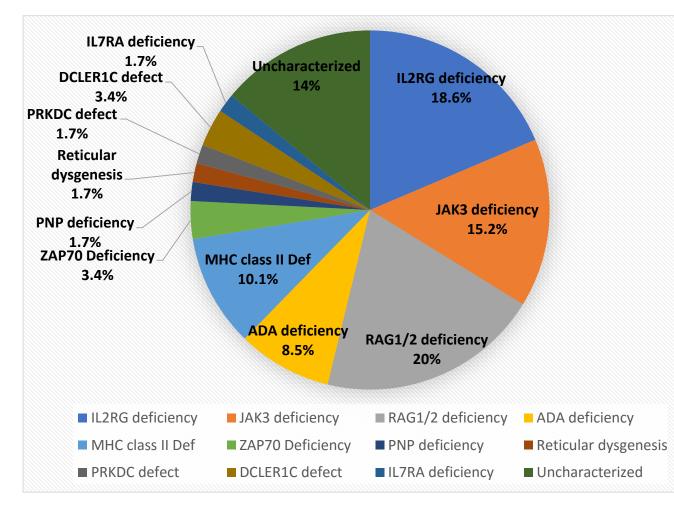
Lack of focus is good thing

- Targeted NGS analysis by Medgenome laboratory revealed previously reported homozygous mutation in exon 8 at c.847C>T; p.Arg283Ter of ZAP -70 gene
- 90% of CD8 positive cells were HLA-DR + and naïve CD8T cell % was very low

Limitations of Sanger sequencing


• One-by one analysis of single genes or candidate genes.

PID diagnosis complicated due to genetic heterogeneity and a clinical overlap among various PID categories. In some cases, many genes are involved in the pathogenesis of a specific PID form. For eg: SCID can result from a defect in any of the 15-20 genetic defects.


- Cost and time consuming to identify the molecular etiology.
- The immunophenotype pattern may not always correlate with the genetic etiology.

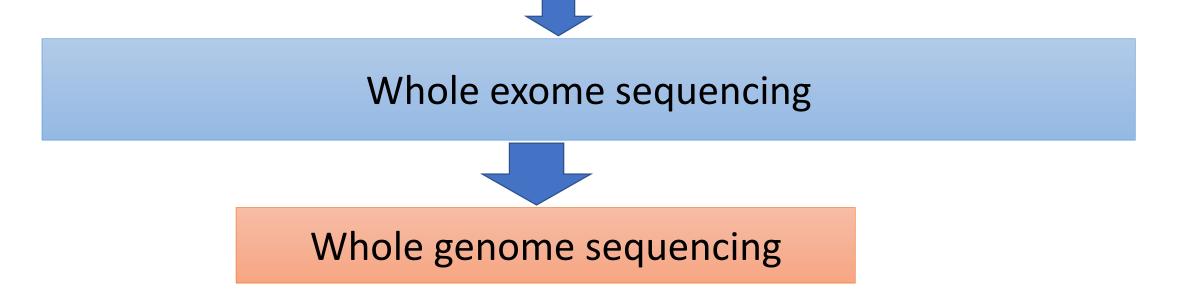
May cases remain unresolved due to lack of phenotype-genotype correlation. Screening the candidate gene does not give the molecular answer.

• Does not detect large deletions or duplications

Spectrum of genetic defects in our cohort (n=57)

SCID gene defect	Percentage (%)
IL2RG deficiency	18.6
JAK3 deficiency	15.2
RAG1/2 deficiency	20
ADA deficiency	8.5
MHC class II Def	10.1
ZAP70 Deficiency	3.4
PNP deficiency	1.7
Reticular dysgenesis	1.7
PRKDC defect	1.7
DCLER1C defect	3.4
IL7RA deficiency	1.7
Uncharacterized	14

Next generation sequencing

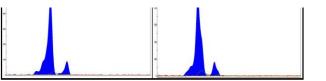


- High throughput, massively parallel technology involving simultaneous sequencing of a large number of template DNA or cDNA fragments in parallel.
- DNA sequencing can be performed on the entire genome or targeted to specific regions.
- Rapid, cost-efficient, accurate, and high-throughput sequencing of millions of DNA fragments in a reasonably short time.

Strategy for NGS for PID

Patients affected with clinical phenotypes highly suggestive of a PID, Targeted Sequencing restricted only to specific genes or to specific regions of interest (specific panels or clinical exome)

What looks like a duck but not a duck

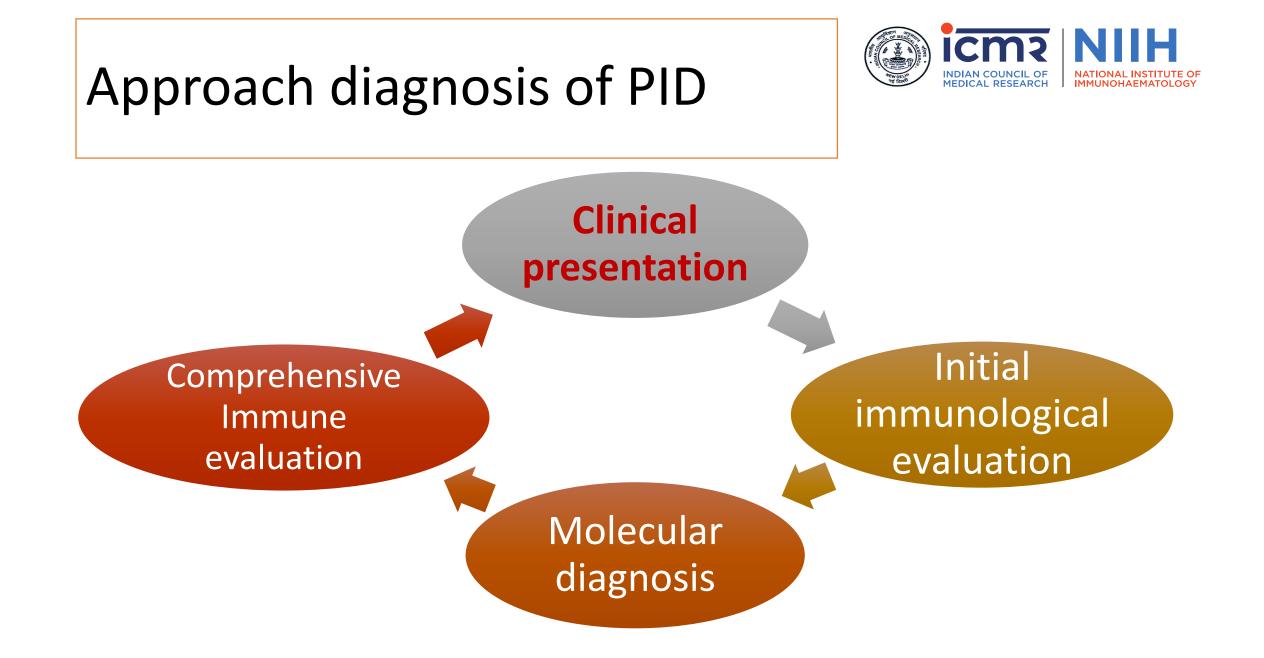

Journal of Clinical Immunology https://doi.org/10.1007/s10875-018-0567-y

ORIGINAL ARTICLE

Approach to Molecular Diagnosis of Chronic Granulomatous Disease (CGD): an Experience from a Large Cohort of 90 Indian Patients

Manasi Kulkarni¹ & Gouri Hule¹ & Martin de Boer² & Karin van Leeuwen² & Priyanka Kambli¹ & Jahnavi Aluri¹ & Maya Gupta¹ & Aparna Dalvi¹ & Snehal Mhatre¹ & Prasad Taur³ & Mukesh Desai³ & Manisha Madkaikar¹

Received: 18 August 2018 / Accepted: 4 November 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018



Distribution of PID cases

IUIS 2017 Classification of PID	Diagnosed Cases Till Date		Daignosed Cases 2017-2018	
	No.	%	No.	%
I. IMMUNODEFICIENCY AFFECTING CELLULAR & HUMORAL IMMUNITY	147	20	47	18
II. CID WITH ASSOCIATED OR SYNDROMIC FEATURES	59	7.8	21	8
III. PREDOMINANTELY ANTIBODY DEFICIENCY	136	18	61	24
IV. DISEASE OF IMMUNE DYSREGULATION	151	20	70	27
V. CONGENITAL DEFECTS OF PHAGOCYTE NO. FUNCTION	234	31	55	21
VI. DEFECT IN INTRENSIC AND INNATE IMMUNITY	24	3	5	2
VII. AUTOINFLAMATORY	1	0.1	0	0
VIII. COMPLEMENT DEFICIENCY	1	0.1	1	0.4
IX PHENOCOPIES OF PID	0	0	0	0
Total	753		260	
PIECE DATA OF THE PROVIDENCE O	VI. DEFECT IN INTRENSIC AND INNATE IMMUNITY 2% CON DEF PHA NO. F	V. GENITAL ECTS OF GOCYTE UNCTION 21%	I RY I IMMUNODEFICI ENCY AFFECTING CELLULAR & HUMORAL IMMUNITY 18%	I. CED WITH USSOCIATED OR SYNDROMIC FEATURES 8%

Acknowledgment

Laboratory group

Maya Gupta Aparna Dalvi Dr. Snehal Mhatre Manasi Kulkarni Jahnavi Aluri Gouri Hule Shraddha Shelar Dr. Umair Priyanka Setia Madhurima Sarkar Madhura Priyanka Kambli Ankita Patel Dr. Reetika **Ramesh Kawale** Nitin Atish Jadhav

Clinicians

Dr. Mukesh Desai- Mumbai D.Nitin Shah- Mumbai Dr. Ganesh- Chennai Dr. Prithesh Nagar- Hyderabad Dr. Indu Khosla- Mumbai Dr. Antony Terrance-Dr. Supriya Dutta- Mumbai Coimbatore Dr. Nitin Shah- Mumbai Dr. Revathi Raj- Chennai Dr. Mishra- Mumbai Dr. Sirisarani- Hyderabad Dr. Sarath Balaji, Chennai, Dr. Indumathi- Bangalore Dr. Harsha Prasad-Dr. Aditya Gupta-Haryana Mangalore Dr. Sunil Bhat-Bangalore Dr. Geetha- Calicut Dr. Nita Radhakrishnan- Delhi Dr. Biju George- Vellore Dr. Janani Sankar-Chennai Dr. Sheela Namphoothiri-Cochin

NGS support

Medgenome Pvt. Ltd, Bangalore, India

WES support Sergio D. Rosenzweig Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, United States.

Fellowship in Genetic Diagnostics

- 6 months
- For Post-graduate degree (MD/MS/DNB) in Pediatrics, Medicine or Obstetrics & Gynaecology, Pathology, Microbiology, Biochemistry, Laboratory Hematology, Laboratory Medicine, Anatomy, Physiology, Dermatology, Hematology, Radiotherapy, Endocrinology, Ophthalmology, Oncology or any other clinical / paraclinical specialty/Superspecialty and holding regular position in Government medical college/hospital.

"Life is like riding a bicycle. To keep your balance you must keep moving." Albert Einstein